一条统计学的数学题
有的专有名词不晓得,只好用英文了。
For a standard Normal distribution M -- N(0,1), find a distribution for a variable Z with values being (-y, -x , 0, x, y) and probability being (q, p, 1-2p-2q, p, q), such that
E[M^k] = E[Z^k], k = 1,2,...,8, where E[] means Expectation, ^ means raising power.
Furthermore, is E[M^k] = E[Z^k], k=9,10 ?
谢谢。
[ 本帖最后由 lcarron78 于 2007-6-19 22:06 编辑 ]
|